Happily Serving You in the Same Location for Over 58 Years!

Welcome!

Meade - 8" LX200-ACF (f/10) Advanced Coma-Free Telescope - (UHTC)

Model#: 0810-60-03

Save $300 until December 31, 2014!

Be the first to review this product

Availability: In stock

Regular Price: $2,599.00

Special Price: $2,299.00

FREE SHIPPING (48 States)
OR
Manufactured by: Meade

Meade - 8" LX200-ACF (f/10) Advanced Coma-Free Telescope - (UHTC)

Details

The most widely used research quality telescope.

Overview:
 

Meade's LX200-ACF brings Advanced Coma-Free (ACF) optics within reach of aspiring astronomers everywhere. Nearly every observatory reflector in the world uses an aplanatic (coma-free) optical system like the Ritchey-Chrétien (RC), including NASA's Hubble Space Telescope. Now you can own similar optics to what the professionals use. The LX200-ACF includes all the field-proven features of the LX200 including GPS, Primary Mirror Lock, Oversized Primary Mirror, SmartDrive™, Smart Mount™, AutoStar® II and more. The new LX200-ACF. It's the biggest news in astronomy since, well, the LX200.

 

Features:

 

f/10 Advanced Coma-Free (ACF) Optics. Building from a classic RC design, Meade has created a new design with the same coma-free pinpoint star images and flatter field also reduces the astigmatism and eliminates diffractions spikes found in classical RCs. The LX200-ACF is the perfect platform for the demanding researcher and imaging enthusiast with telescopes available in apertures of 8 inches, 10 inches, 12 inches, 14 inches, and 16 inches. However, let's get to step one first and disect why ACF technology is so beneficial and how it functions. Using the fundamentals behind the Ritchey Chretien design, ACF just adds even more to the big picture. Diffraction refers to various phenomena which occur when a wave encounters an obstacle. Coma is very similar to diffraction effects, in which light from a specific object cannot be focused properly and therefore results in fuzzy. undetiled, and inaccurate images. Since this is purely an optical aberration and widely understood, there is absolutely NO reason why it cannot be fixed to near perfection. With this new technology by Meade directly built into the optics, observors can now obtain a more aplanatic (coma-free) and spherical free telescopic experience. Years ago, this luxury would've costed a minimum of a few thousand dollars, but with Meade's invention, that is pure HISTORY!


Meade Ultra-High Transmission Coatings (UHTC™). Increasing total light transmission and image brightness by nearly 20% over Meade's standard coatings. Objects such as stars, galaxies and nebulae will appear significantly brighter. More details are below.

An important optional feature to optimize the performance of your Meade telescope.

 
Image brightness in a telescope is crucially dependent on the reflectivity of the telescope's mirrors and on the transmission of its lenses. Neither of these processes, mirror-reflectivity or lens-transmission, is, however, perfect; light loss occurs in each instance where light is reflected or transmitted. Uncoated glass, for example, reflects about 4% of the light impacting it; in the case of an uncoated lens 4% of the light is lost at entrance to and at exit from the lens, for a total light loss of about 8%.

 
Early reflecting telescopes of the 1700's and 1800's suffered greatly from mirrors of poor reflectivity — reflection losses of 50% or more were not uncommon. Later, silvered mirrors improved reflectivity, but at high cost and with poor durability. Modern optical coatings have succeeded in reducing mirror-reflection and lens-transmission losses to acceptable levels at reasonable cost.

Light Diagram

Meade Standard Coatings: The optical surfaces of all Meade telescopes include high-grade optical coatings fully consistent in quality with the precision of the optical surfaces themselves. These standard-equipment coatings include mirror surfaces of highly purified aluminum, vacuum-deposited at high temperature and overcoated with silicon monoxide (SiO), and correcting lenses coated on both sides for high light transmission with magnesium fluoride (MgF2). Meade standard mirror and lens coatings equal or exceed the reflectivity and transmission, respectively, of virtually any optical coatings currently offered in the commercial telescope industry.

The Meade UHTC Group: Technologies recently developed at the Meade Irvine coatings facility, however, including installation of some of the largest and most advanced vacuum coating instrumentation currently available, have permitted the vacuum-deposition of a series of exotic optical coatings precisely tuned to optimize the visual, photographic, and CCD imaging performance of Meade telescopes. These specialized, and extremely advantageous, coatings are offered here as the Meade Ultra-High Transmission Coatings (UHTC) group, a coatings group available optionally on many Meade telescope models. In Meade catadioptric, or mirror-lens, telescopes (including the ETX-90AT, ETX-105AT, and ETX-125AT; LX10, LX90, and LX200GPS Schmidt-Cassegrains; and LXD55-Series Schmidt-Newtonians) before incoming light is brought to a focus, it passes through, or is reflected by, four optical surfaces: the front surface of the correcting lens, the rear surface of the correcting lens, the primary mirror, and the secondary mirror. Each of these four surfaces results in some loss of light, with the level of loss being dependent on the chemistry of each surface's optical coatings and on the wavelength of light. (Standard aluminum mirror coatings, for example, typically have their highest reflectivity in the yellow region of the visual spectrum, at a wavelength of about 580nm.) Mirror Coatings: Meade ETX, Schmidt-Cassegrain, and Schmidt-Newtonian telescopes equipped with the Ultra-High Transmission Coatings group include primary and secondary mirrors coated with aluminum enhanced with a complex stack of multi-layer coatings of titanium dioxide (TiO2) and silicon dioxide (SiO2). The thickness of each coating layer is precisely controlled to within 1% of optimal thickness. The result is a dramatic increase in mirror reflectivity across the entire visible spectrum.

Correcting Lens Coatings: Meade telescopes ordered with the UHTC group include, in addition, an exotic and tightly-controlled series of coatings on both sides of the correcting lens or correcting plate, coatings which include multiple layers of aluminum oxide (Al2O3), titanium dioxide (TiO2), and magnesium fluoride (MgF2). Per-surface light transmission of the correcting lens is thereby increased at the yellow wavelength of 580nm., for example, to 99.8%, versus a per-surface transmission of 98.7% for the standard coating.

UHTC label

The importance of the UHTC group becomes apparent when comparing total telescope light transmission, or throughput, caused by the multiplier, or compounding, effect of the four optical surfaces. With each optical surface contributing significantly to telescope light throughput, the effect of all four surfaces combined is indeed dramatic, as demonstrated by the graphs on the facing page, as well as by the table of the brightest nebular emission lines. At the H-a wavelength of 656nm., total transmission increases from 76.7% to 88.5%, an increase of 15.4%; at the helium wavelengths of 588nm. and 469nm. — strong emission lines in hot planetary nebulae — total telescope transmission increases by 13.8% and 16.8%, respectively; at the two nitrogen II lines of 655nm. and 658nm. and at the sulfur II line of 673nm., transmission is increased by 16%. Averaged over the entire visible spectrum (450nm. to 700nm.), total light transmission to the telescope focus increases by about 15%.




An important optional feature to optimize the performance of your Meade telescope. Image brightness in a telescope is crucially dependent on the reflectivity of the telescope's mirrors and on the transmission of its lenses. Neither of these processes, mirror-reflectivity or lens-transmission, is, however, perfect; light loss occurs in each instance where light is reflected or transmitted. Uncoated glass, for example, reflects about 4% of the light impacting it; in the case of an uncoated lens 4% of the light is lost at entrance to and at exit from the lens, for a total light loss of about 8%. Early reflecting telescopes of the 1700's and 1800's suffered greatly from mirrors of poor reflectivity — reflection losses of 50% or more were not uncommon. Later, silvered mirrors improved reflectivity, but at high cost and with poor durability. Modern optical coatings have succeeded in reducing mirror-reflection and lens-transmission losses to acceptable levels at reasonable cost.


Zero Image-Shift Microfocuser. Optional for the 8", 10", 12",14" and standard with the 16" models, allows you to obtain precise image focus with no image movement. Perfect for astroimaging or during planetary observation. Focus is controlled thru the Autostar II handbox. The Meade #1209 Zero Image-Shift Microfocuser allows precise, vibration-free image focus during visual, CCD, and astrophotographic applications. It also allows you to achieve focus without causing a viewed object to move out of position in the eyepiece. The microfocuser comes equipped with a handbox which requires 8 AAA batteries (user-supplied). The microfocuser maintains precise image centering on even the smallest CCD chips. The microfocuser operates at four speeds.


Oversized Primary Mirror. Meade primary mirror diameters are greater than their listed aperture (e.g., the diameter of the 8" LX200-ACF is actually 8.25"). This additional 1/4" yields a wide, fully illuminated field-of-view.
 

Primary Mirror Lock allows you to lock the mirror in place preventing movement during long-exposure astrophotography.
 

Smart Drive™ provides permanent periodic error correction (PPEC) on both axes by learning and averaging error over the course of one or more training periods, thereby minimizing guiding corrections during long-exposure photographs. PPEC is available on both axes and functions in both polar and altazimuth modes.

GPS Receiver automatically inputs precise time, date, and geographical location to help quickly and precisely align the telescope. Communicating with satellites provides relief of stress and extra time to align the telescope correctly. This GPS Reciever along with the mirror lock decreases the overall chance of the telescope becoming misaligned due to bumping or other minor movement.

AutoAlign™. Telescopes with Meade's AutoAlign are smart scopes that know the night sky right out of the box. AutoAlign picks two alignment stars for you and places them right in your view-finder. Just center to fine tune your alignment and the wonders of the universe are at your fingertips. This feature will also provide a reasonable indication to how precise and accurate the telescope is aligned right out of the box before you begin to use it. So if AutoAlign manages to perfectly center image the star without any human intervention, chances are you as the observor are already ready to observe!

 AutoStar® II controller features "Hot Keys" for quick access to a 145,000 celestial object database. AutoStar II can be updated with the latest software upgrades, guided tours and timely objects like comets free at meade.com.

 

Whether you are an avid cosmos researcher or an armature night sky gazer, the best tool you could ever possess is a high-quality coma free telescope. So what does that mean, in layman's terms?  Well, our eyes are built to discern images illuminated up to a certain wavelength of light. Beyond that, we can't see an object. Meade's newer optical technologies such as f/10 ACF optics (focal length 2000mm) and Ultra-High Transmission Coatings (UHTC), which are used in the Meade LX200-ACF 8", help break down that human restriction by enhancing the image's brightness, clarity and sharpness.

Using a Meade 8" LX200ACF computerized telescope, stars, nebula and galaxies will seem brighter and closer than they have ever been seen before. And that's because the pioneering optical technology developed at the Meade Irvine coatings research facility helps dramatically reduce light losses when viewing celestial objects through an UHTC coated coma free telescope.  This unique feature is based on technologies used in NASA's Hubble Space Telescope, and is now within reach of backyard sky gazers and armature astronomers alike. 

Building on the conventional Ritchey-Chrétien (RC) optical technology, the Meade 8" LX-200-ACF features a powerful new optical design that significantly reduces astigmatism and diminishes diffraction spikes usually common to RC technology.  This means your coma free telescope will make stars, galaxies and nebula look sharper, brighter and more precise that ever before. None of Meade's competitors offering Schmidt-Cassegrain telescopes can make such a claim with any confidence.

And for days when you want to quickly and effortlessly align your scope to view a specific heavenly object, the Meade 8" LX200ACF computerized telescope features a genuine Sony 16-channel GPS receiver that will automatically input ultra-precise coordinates to accurately align your scope to the target with incomparable (~1 arc minute) exactness.

Once you've spotted your object in the sky, you can relax and observe it for a long time, taking in every minor detail that your Meade 8" LX200ACF computerized telescope exposes to you. And to give you a stable viewing experience free from image shifts due to mirror movements, the Meade 8" LX-200-ACF provides a mirror locking mechanism which helps to cancel any shifts in the image being observed due to movements in the primary mirror. You do this by reaching out and adjusting the lock knob that's conveniently accessible to you during periods of extended star gazing.

To help you effortlessly rotate your scope and support it for your gazing pleasure, the Meade 8" LX-200-ACF comes with a heavyweight class mount with double forks. With its built in world class functionality, this mount allows your coma free telescope to swerve  at user selected speeds as fast as 1 to 8 degrees per second at increments of  0.1 degrees per second, or as finely as .01x to 1x sidereal in 1 1/100th increments.  

The mount is fed by power from 8 C-cell batteries that can keep your session going for approximately 20 hours of fun-filled open sky viewing. Alternately, if you are the indoor-type viewer, and have a power source located nearby, your scope also comes with an optional Universal AC power adaptor. And with the 8 inch LX200-ACF Bundle you get a Meade 25 foot DC power cable that goes a long way to your vantage point to help power your viewing experience. 

But what if you are in the great outdoors and suddenly find yourself without access to power? Fear not, Meade has you covered there too!   The Meade 8" LX200ACF computerized telescope provides you with mechanical locks as well as slow motion hand controls in both axis so you can control your scope's slew manually as well.

But there's much more to this coma free telescope than meets the eye. To give you a stable and steady viewing experience, the Meade 8" LX-200-ACF is delivered with a best-in-class height adjustable heavy-duty Meade Field Tripod. And it comes with a Series 4000 26mm Plössl eyepiece that will allow you to expand the range of your magnification using Meade's precision engineered optic technology. You also get a high quality 8X50 viewfinder that comes with a quick release bracket. And that's not all - the best is yet to come!

Your Meade 8" LX200ACF computerized telescope comes with the world renowned Meade AutoStar® Suite Astronomer Edition Software that works in tandem with the built in GPS capability and an extensive database of over 145,000 celestial objects. With the power and precision of AutoStar at your fingertips, you can impress friends and neighbors by locating and zooming in on any of the objects by simply selecting one using the Hot Key feature.  Your Meade 8" LX-200-ACF will use AutoStar's GOTO functionality to automatically point your scope to the target object so you can enjoy the clearest view of it ever.

The device is available as a bundle of core components. The 8 inch LX200-ACF Bundle includes the Meade 8" LX200ACF computerized telescope, Meade Series 4000 Eyepiece and Filter Kit, Celestron 17 Amp Hour Power Tank and the Meade #607 25 foot DC Power Cable.  Buy individual components of your coma free telescope as you require them, or go for the bundle and enjoy many hours of star gazing with your family and friends!


Back to top

Product Series

LX200-ACF Advanced Coma-Free Optical Tube Assemblies

UHTC

An important optional feature to optimize the performance of your Meade telescope. Image brightness in a telescope is crucially dependent on the reflectivity of the telescope's mirrors and on the transmission of its lenses. Neither of these processes, mirror-reflectivity or lens-transmission, is, however, perfect; light loss occurs in each instance where light is reflected or transmitted. Uncoated glass, for example, reflects about 4% of the light impacting it; in the case of an uncoated lens 4% of the light is lost at entrance to and at exit from the lens, for a total light loss of about 8%.



Early reflecting telescopes of the 1700's and 1800's suffered greatly from mirrors of poor reflectivity- reflection losses of 50% or more were not uncommon. Later, silvered mirrors improved reflectivity, but at high cost and with poor durability. Modern optical coatings have succeeded in reducing mirror-reflection and lens-transmission losses to acceptable levels at reasonable cost.

Meade Standard Coatings: The optical surfaces of all Meade telescopes include high-grade optical coatings fully consistent in quality with the precision of the optical surfaces themselves. These standard-equipment coatings include mirror surfaces of highly purified aluminum, vacuum-deposited at high temperature and overcoated with silicon monoxide (SiO), and correcting lenses coated on both sides for high light transmission with magnesium fluoride (MgF2). Meade standard mirror and lens coatings equal or exceed the reflectivity and transmission, respectively, of virtually any optical coatings currently offered in the commercial telescope industry.

The Meade UHTC Group: Technologies recently developed at the Meade Irvine coatings facility, however, including installation of some of the largest and most advanced vacuum coating instrumentation currently available, have permitted the vacuum-deposition of a series of exotic optical coatings precisely tuned to optimize the visual, photographic, and CCD imaging performance of Meade telescopes. These specialized, and extremely advantageous, coatings are offered here as the Meade Ultra-High Transmission Coatings (UHTC) group, a coatings group available optionally on many Meade telescope models.

In Meade catadioptric, or mirror-lens, telescopes (including the ETX-90EC, ETX-105EC and ETX-125EC; LX10, LX90, and LX200GPS Schmidt-Cassegrains; and LXD55-Series Schmidt-Newtonians) before incoming light is brought to a focus, it passes through, or is reflected by, four optical surfaces: the front surface of the correcting lens, the rear surface of the correcting lens, the primary mirror, and the secondary mirror. Each of these four surfaces results in some loss of light, with the level of loss being dependent on the chemistry of each surface's optical coatings and on the wavelength of light. (Standard aluminum mirror coatings, for example, typically have their highest reflectivity in the yellow region of the visual spectrum, at a wavelength of about 580nm.)

Mirror Coatings: Meade ETX, Schmidt-Cassegrain, and Schmidt-Newtonian telescopes equipped with the Ultra-High Transmission Coatings group include primary and secondary mirrors coated with aluminum enhanced with a complex stack of multi-layer coatings of titanium dioxide (TiO2) and silicon dioxide (SiO2). The thickness of each coating layer precisely controlled to within +/-1% of optimal thickness. The result is a dramatic increase in mirror reflectivity across the entire visible spectrum; at the important hydrogen-alpha wavelength of 656nm. - the predominant wavelength of emission nebulae - reflectivity is increased from 89% to over 97%.

Correcting Lens Coatings: Meade telescopes ordered with the UHTC group include, in addition, an exotic and tightly-controlled series of coatings on both sides of the correcting lens or correcting plate, coatings which include multiple layers of aluminum oxide (Al2O3), titanium dioxide (TiO2), and magnesium fluoride (MgF2). Per-surface light transmission of the correcting lens is thereby increased at the yellow wavelength of 580nm., for example, to 99.8%, versus a per-surface transmission of 98.7% for the standard coating.

The importance of the UHTC group becomes apparent when comparing total telescope light transmission, or throughput, caused by the multiplier, or compounding, effect of the four optical surfaces. With each optical surface contributing significantly to telescope light throughput, the effect of all four surfaces combined is indeed dramatic, as demonstrated by the graphs on the facing page, as well as by the table of the brightest nebular emission lines. At the H-alpha wavelength of 656nm., total transmission increases from 77% to 93%, an increase of 93/77 or 21% at all three nitrogen-III and sulfur-II wavelengths of 655nm. and 673nm.- prominent lines in certain galactic nuclei and in supernova remnanats such as the Crab Nebula- transmission increases by 21%; ; at the helium wavelengths of 588nm. and 469nm. - strong emission lines in hot planetary nebulae - total telescope transmission increases by 18% and 19%, respectively; at the two nitrogen II lines of 655nm. and 658nm. and at the sulfur II line of 673nm., transmission is increased by 21%. Averaged over the entire visible spectrum (450nm. to 700nm.), total light transmission to the telescope focus increases by about 20%.

Observing with the UHTC: Meade ETX, Schmidt-Cassegrain, and Schmidt-Newtonian telescopes equipped with the UHTC present dramatically enhanced detail on the full range of celestial objects - from emission and planetary nebulae such as M8, M20, and M57 to star clusters and galaxies such as M3, M13, and M101. Observations of the Moon and planets, since they are observed in reflected (white) sunlight, benefit in image brightness from the full spectrum of increased transmission. The overall effect of the UHTC is, as it relates to image brightness, to increase the telescope's effective aperture. Image brightness (i.e., the ability to see faint detail) of the Meade 10" LX200GPS is, for example, effectively increased by about one full inch of aperture.

Emission Line Wavelength (nm.) Transmission: Standard Coatings (%) Transmission: UHTC Group (%) Increase*
Hydrogen-alpha (Ha) 656 76.9 93.1 21%
Hydrogen-beta (Hb) 486 75.3 85.8 14%
Oxygen III 496 76.5 85.4 12%
Oxygen III 501 77 85.4 11%
Helium II 496 72.5 86.1 19%
Helium I 588 79.5 93.5 18%
Nitrogen II 655 77 93.2 21%
Nitrogen II 658 76.7 92.8 21%
Sulfer II 673 75.7 91.8 21%


* The % increase is obtained by dividing the UHTC-transmission (column 4) by the standard coatings transmission (column 3).

Effects on CCD Imaging: While the human eye loses sensitivity to light beyond wavelengths of about 700nm., CCD imaging chips remain sensitive to about 750nm. and longer, wavelengths at which the reflectivity of an aluminum coating is near its lowpoint. Importantly, however, the UHTC's total light transmission at 750nm. is 83%, vs. 72% for standard coatings, an increase of 83/72, or 15%.

Additional Information

Name Meade - 8" LX200-ACF (f/10) Advanced Coma-Free Telescope - (UHTC)
Manufacturer Meade
Model 0810-60-03
Accessory Tray Yes
Aperture 203mm (8")
Diameter 8"
Eyepiece 1 26mm
Eyepiece Barrel Size 1.25"
Focal Length 2032mm
Focal Ratio f/10
Fork Arm yes
GPS Yes
Magnification (high power) 400x
Motor Drive 9 speed
Mount Dual fork GPS equipped mount with GOTO
Mount Weight 45LB
Optical Design Advanced Coma-Free (ACF) with UHTC
Periodic Error Correction yes
Power Requirements 12 volt
Primary Mirror 8"
Secondary Mirror Obstruction 2.65"
Telescope Interface RS232
Tripod Aluminum
Tripod Adaptable Yes
Viewfinder 7x50
Warranty one year parts and labor